Reflection/transmission Characteristics of a Discontinuous Galerkin Method for Maxwell’s Equations in Dispersive Inhomogeneous Media
نویسندگان
چکیده
In this paper, we analyze the transmission and reflection properties of a high order discontinuous Galerkin method for dispersive Maxwell’s equations, originally proposed by Lu et al. [J. Comput. Phys. 200 (2004), pp. 549-580]. We study the reflection and transmission properties of the numerical method for up to second-order polynomial elements for oneand two-dimensional Maxwell’s equations with rectangular meshes. High order accuracy has been shown for reflection and transmission coefficients near material interfaces.
منابع مشابه
Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media
This study is concerned with the solution of the time domain Maxwell’s equations in a dispersive propagation media by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the media. The resulting system of equations is solved using a centered flux discontinuous Galerkin formulation for the discretization in space and a second order ...
متن کاملA Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملDiscontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions
In this paper, we will present a unified formulation of discontinuous Galerkin method (DGM) for Maxwell’s equations in linear dispersive and lossy materials of Debye type and in the artificial perfectly matched layer (PML) regions. An auxiliary differential equation (ADE) method is used to handle the frequency-dependent constitutive relations with the help of auxiliary polarization currents in ...
متن کاملTheoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations
This report focuses on a centered-fluxes discontinuous Galerkin method coupled to a second-order Leap-Frog time scheme for the propagation of electromagnetic waves in dispersive media. After a presentation of the physical phenomenon and the classical dispersion models (particularly the Drude one), a generalized dispersive model is introduced. An a priori stability and convergence study is lead ...
متن کاملThe Time-Harmonic Discontinuous Galerkin Method as a Robust Forward Solver for Microwave Imaging Applications
Novel microwave imaging systems require flexible forward solvers capable of incorporating arbitrary boundary conditions and inhomogeneous background constitutive parameters. In this work we focus on the implementation of a time-harmonic Discontinuous Galerkin Method (DGM) forward solver with a number of features that aim to benefit tomographic microwave imaging algorithms: locally varying high-...
متن کامل